Model-based Geostatistics for Global Public Health
Lancaster University
The Matérn family includes two important special cases:
Definition: Distance (\(h^*\)) where correlation drops to 0.05 (5%)
General Solution: \[ \rho(h^*) = 0.05 \] Solve for \(h^*\) to find practical range
Exponential Covariance Example: \[ \rho(h^*) = \exp\left(-\frac{h^*}{\phi}\right) = 0.05 \] \[ \Rightarrow -\frac{h^*}{\phi} = \log(0.05) \approx -3 \] \[ \Rightarrow h^* \approx 3\phi \]
The likelihood function for parameters \(\theta = (\beta, \sigma^2, \phi, \tau^2)\) is given by:
\[ L(\theta) = \int N(W; D\beta, \Omega) f(y| W) dW \]
where \(\Omega = \sigma^2 R(\phi) + \tau^2I_n\).
We approximate this using Monte Carlo integration:
\[ L_m(\theta) = \frac{1}{B} \sum_{j=1}^{B} \frac{N\left(W^{(j)}; D\beta, \Omega \right)}{N\left(W^{(j)}; D\beta_0, \Omega_0\right)} \] where \(W^{(i)}\) are sampled from the distribution of \(W\) given \(y\) using an MCMC algorithm.